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Abstract. Most previous methods for tracking of multiple objects fol-
low the conventional “tracking by detection” scheme and focus on im-
proving the performance of category-specific object detectors as well
as the between-frame tracklet association. These methods are there-
fore heavily sensitive to the performance of the object detectors, leading
to limited application scenarios. In this work, we overcome this issue
by a novel model-free framework that incorporates generic category-
independent object proposals without the need to pretrain any object
detectors. In each frame, our method generates a small number of tar-
get object proposals that are shared by multiple objects regardless of
their category. This significantly improves the search efficiency in com-
parison to the traditional dense sampling approach. To further increase
the discriminative power of our tracker among targets, we treat all other
object proposals as the negative samples, i.e. as “distractors”, and up-
date them in an online fashion. For a comprehensive evaluation, we test
on the PETS benchmark datasets as well as a new MOOT benchmark
dataset that contains more challenging videos. Results show that our
method achieves superior performance in terms of both computational
speed and tracking accuracy metrics.

1 Introduction

Single object tracking attained considerable success thanks to the advances in
“tracking-by-detection” that demonstrated improved performance on standard
benchmarks [1,2,3]. Compared to single-object tracking counterpart, multiple-
object tracking is a more challenging task due to the frequent occlusions between
the target objects [4] and typical similarities in their motion patterns as well
as visual appearances. Moreover, the background scenes also tend to be more
cluttered due to the presence of other moving objects [5,3].

In model-based tracking-by-detection of multiple objects, an offline trained
category-specific object detector, e.g., DPM [6] or R-CNN [7], is applied at every
frame to generate high quality object hypotheses, and then graph-based methods
such as max-flow [8,9] are used to solve the subsequent multi-frame multi-target
association problem. These multiple object tracking methods, however, depend
heavily on the performance of category-specific object detectors, which often miss
objects or generate false positives that are induced by the discrepancy between
the training dataset and the test conditions of individual deployments [10].
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Fig. 1. Results obtained using our model-free multiple object tracking method.
Bounding boxes of the same color denote the same tracked object. After initial-
ization, our method tracks each object without any pretrained models.

Being constrained to a specific object class also limits the applicability of
the tracker to a certain setting, for example, multiple vehicle tracking in traffic
scenes. In practice, however, various applications demand tracking of different
types of objects undergoing complex motions as shown in Fig. 1.

On the other end of the spectrum, “model-free” approaches aim to track
arbitrary (category-independent) objects [11,12,13,14,15]. They initiate a single
bounding box on the target in the first frame and then employ either a genera-
tive [16,17,18,19] or a discriminative [20,21,22,23] strategy to train their object
models online. These methods are successfully applied for single-object track-
ing. However, extending “model-free” methods to multiple tracking task is not
a straightforward problem due to two major reasons:

• Computational efficiency – Since each tracker searches around the previous
location to localize the object, the time cost is proportional to the number
of objects.

• Interactions – Objects contact or occlude each other. They often have sim-
ilar appearances. Blindly and independently applying single-object trackers
multiple times for different targets leads to ambiguities and tracking failures.

To overcome the above challenges, we propose a model-free multiple object
tracking framework based on generic object proposals. We take advantage of the
proposals in both online training and testing of the tracker.

In the testing stage, a small set of object candidates are generated based
on simple objectness cues first. Notice, this set is shared by all trackers and it
provides two benefits: i) a significant reduction of the number of candidates, and
ii) tracking accuracy improvement since many false positives can be eliminated
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at this stage. The proposals are then assigned to trackers based on the classifier
confidence and temporal smoothness measures. The number of proposals can be
as many as hundreds while the number of objects might be only a few. We use
the Hungarian algorithm [24,23] with appropriate modifications to reduce the
computational cost during the data association stage. Other association methods
[1,2,3] can also be used, yet we observe that the computationally efficient Hun-
garian method works favorably when we build discriminative classifiers based on
the generated proposals.

In the training stage, we collect the proposals as hard negative samples in-
stead of manual selecting around positive samples. These proposals are expected
to contain the other targets and object-like background clutter. Mining explicitly
for such hard negative samples and employing hard negatives in the training of
individual object models significantly improves the discriminative power of the
object models. We update the classifiers at certain time intervals in an online
fashion to compensate for object appearances changes over time and incorpo-
rate new distractors. A few local candidates sampled around the previous object
locations are included in the negative set to further improve tracking precision.

We focus on a challenging scenario of multi-object tracking where each ob-
ject may move very fast in an irregular fashion. To our knowledge, this chal-
lenge has not been widely researched and there are only a few benchmarks (e.g.
PETS [5]) available for investigation. Therefore, we collected an extensive set
of challenging video sequences from various sources and manually labeled the
ground-truth object locations for a comprehensive experimental evaluation.

Our method is conceptually simple, easy to implement, and most impor-
tantly, achieves superior performance in comparison to several state-of-the-art
techniques in terms of both tracking accuracy metrics and computational effi-
ciency.

2 Related Work

Here we give a brief review to previous methods for multi-object tracking that
are most related to this paper. For more comprehensive literature surveys the
reader is referred to [11,12,13,3].

Multiple Target Tracking

As aforementioned in Section 1, most multiple object tracking methods fo-
cus on the data association problem, assuming sufficiently long and accurate
tracklets are provided by using advanced object detectors [3]. For example, [25]
considers motion dynamics as the major cue to distinguish different targets with
similar appearance. It solves the problem as generalized linear assignment (GLA)
of tracklets, which are incrementally joined forming longer trajectories based on
their similar dynamics. The work in [1] observes that motion cues are not always
reliable for this task, due to for example abrupt camera movement. As a remedy
a structured motion constraint between objects is therefore proposed to address
this issue.
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Tracker in [2] proposes an online discriminative appearance learning approach
to handle similar appearances of different objects in tracklet association. This
method is similar to our method to be described in this paper; however, in their
work those negative training samples are only collected around the tracklets,
while ours pivots on the hard negative ones.

Model-Free Object Tracking

Model-free object tracking algorithms are proposed primarily for solving sin-
gle object tracking applications [11,12]. The work in [26] tries to improve the
identification of a single target object by also tracking stable features in the
background, thereby improving the location prior for the target object. [27] pro-
poses a context-aware tracker which considers a set of auxiliary objects as the
contextual information for the foreground. These auxiliary objects must sat-
isfy conditions such as having persistent co-occurrence with the foreground and
consistent motion correlation.

The tracker in [28] is probably the most closely related work to ours. However,
they assume spatial relationship between objects. For instance, nearby objects
tend to move along the same direction. The appearance models of all the objects
and the structural constraints between these objects are jointly trained in an
online structured support vector machine framework. Our framework has no
such an assumption and can track arbitrarily moving objects.

Object Proposals for Visual Tracking

As reported in [29,30], using object proposal improves the object detection
benchmark along with the convolutional neural nets. Since, a subset of high-
quality candidates are used for detection, object proposal methods boost not
only the speed but also the accuracy by reducing false positives. The top per-
forming detection methods [31,32] for PASCAL VOC [33] use detection propos-
als. Among the existed proposal methods, the EdgeBox method [30] proposes
object candidates based on the observation that the number of contours wholly
enclosed by a bounding box is an indicator of the likelihood of the box contain-
ing an object. It is designed as a fast algorithm to balance between speed and
proposal recall, comparing to BING [34] and region proposal network (RPN) [7].

Many work exist adopting the object proposals for the model-free single
object tracking. A straightforward strategy based on linear combination of the
original tracking confidence and an adaptive objectness score obtained by BING
is employed in [35]. In [36], a detection proposal scheme is applied as a post-
processing step, mainly to improve the tracker’s adaptability to scale and aspect
ratio changes. EBT [37] employs the EdgeBoxes method to globally track the
object, disregarding potentially fast or drastic object motion. In contrast, our
work utilizes the shared proposals for efficient handling of multiple trackers. [38]
deals with generic object tracking for street scenes by generating multi-scale
candidates from the point-density map. Tracking is performed using the pseudo-
Boolean optimization (QPBO) method. In comparison, our method is applied
to more generic object categories rather than street scenes. Besides, our object
models is built taking advantage of the proposals, while [38] adopts a generative
model using RGB feature distance.
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Fig. 2. The structure of our model-free multiple object tracker. The only input
is the bounding boxes at the first frame. Our method then initializes multiple
classifiers for each object taking advantage of a small set of object proposals
generated from the frame. In the next frame, these classifiers are used to assign
confidence scores for the candidate proposals. The final trajectories are obtained
after solving the optimal association problem. Note that, we also apply the pro-
posals to online update the classifiers to make them more robust to distractors.

3 Multiple Object Tracking with Proposals

As illustrated in Figure 2, our framework starts with a few manually initialized
bounding boxes on the target objects to be tracked in the first frame of the
video. This is similar to the single object online visual tracking task [11,12,13].
Given these initial bounding boxes, denoted as {Bit=1}, i = 1, . . . , No, where No
is the total number of objects, the multiple object tracking problem then aims to
find the locations and bounding boxes of the multiple objects in the remainder
of the video while maintaining the correct identity of each object.

Following the tracking-by-detection framework, we train the object appear-
ance models for each object. We have an option to use either the generative
or discriminative learning strategy. Recent literature on object tracking resort
to the discriminative learning to maximize the inter-class separability between
the object and background regions and report improved performance as the dis-
criminative learning is more robust to distractions from the background. This
property is especially important in multiple object tracking [2,39] where the
objects exhibit similar appearance and interact frequently, as depicted in Fig-2.

As explained in Section 1, we do not independently initialize No classifiers
by collecting locally and densely sampled negative patches as training samples,
a scheme that conventional online single object trackers typically employ.
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Instead, we incorporate object proposals [29,30] to generate a small number
of shared object candidates. Notice that, we are not simply using the original
object proposals either, since the sizes of the objects usually change during the
tracking. We impose the proposal bounding box sizes to be within a certain
range of the object sizes. More details about this can be found in Section 3.1.

Suppose the object proposal bounding boxes are {B̂jt=1}, j = 1, . . . , N t=1
p ,

where N t=1
p is the total number of proposals in the first frame. We train the

classifiers with the corresponding positive samples Bit=1 that are not in the
common negative set {B̂jt=1}. The initialized classifiers are denoted as

f it=1(B), i = 1, . . . , No, (1)

We additionally select a small set of local candidates sampled around the object
to further improve the discriminative power, thus the localization precision, of
the classifier as [37].

In the consecutive frame, we generate a set of proposals {B̂jt=2}, j = 1, . . . , N t=2
p ,

to be shared and tested by all classifiers {f it=1(B)}. Considering the temporal
smoothness between the object Bit=1 and the proposal B̂jt=2, (spatial distance
between them), we build an association matrix that will be efficiently optimized
by a modified Hungarian algorithm [24,23]. The new object locations are then
determined as the optimal solution of this association problem. More details
about it can be found in Section 3.2.

To adapt the object appearance changes as well as to increase the discrimina-
tive power of the classifiers against newly appeared distractors, we incrementally
update the classifiers by treating the estimated bounding box in current frame
as the positive sample and object proposals as the negative samples as we did
in the first frame. More information is in Section 3.3.

3.1 Object Proposal Generation

As mentioned in Section 2, various object proposal algorithms exist. We employ
EdgeBox [30] as it strikes a good balance between recall and speed. In our
experimental analysis, we also test other proposal methods such as BING [34]
and region proposal network (RPN) [7].

Two important factors should be noticed here. The first one is the about
the sizes of the generated object proposals, termed as size adaption ratio and
denoted as α ∈ [0, 1]. We allow the size of the proposals maximally differ the
target with a bounding box intersection-over-union (IoU) [33] of ratio α. To be
specific, we consider B̂jt only when

max
i

(IoU(B̂jt , B
i
t−1, )) > α, i ∈ [1, . . . , No] (2)

This setting significantly reduces the number of proposals while permitting the
object window to adapt the target size changes at the same time. We use α = 0.8
and test other values in the experimental part.
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The other factor is the maximal number of object proposals generated. Edge-
Box does not output a fixed number of proposals. The number of proposals could
be any depending on the threshold of the “objectness” score (set as 0.01 as rec-
ommended). An appropriate maximal number of proposals needs to be used as
its lower values may result in missing the object window in the proposal set
while its higher values would cause an extensive number of distractors. We set
this number at 500 for all experiments. We also run test other values of the
maximal number of proposals in Section 4.2.

Similar to [37], we generate a fixed number of bounding boxes, {B̃kt }it−1,
k = 1, . . . , Ns, by sampling only around the previous object location Bit−1 for

each object (as in traditional methods). This set {B̃kt }it−1 is only tested by the
corresponding classifier f it−1(B) and they are useful to smoothen the trajectory
as the object proposal component works independently at each frame, which
may result in temporally inconsistent proposals. Thus, a combined set of {B̂jt }∪
{B̃kt }it−1 is used during the test stage for the classifier f it−1(B). However, we
only update the classifier when the estimated one comes from the proposal set
{B̂jt } to attain resistance to potential corruptions. We sample Ns = 80 patches
uniformly within a 30-pixels radius. More details are in Section 3.3.

3.2 Optimal Target Association

Given No targets and (N t
p + Ns × No) candidates, the target association stage

therefore aims to find the optimal non-repetitive No candidates for the No tar-
gets, such that the overall gain is maximized. Note that, the candidates {B̃kt }it−1

are only allowed to link with target i, thus we set the gain values of linking them
to other targets to zero.

The gain value P (Bt, i) of linking a candidate Bt to target i is designed base
on both classifier confidence score and temporal smoothness,

P (Bt, i) = f it−1(Bt) + s(Bt, B
i
t−1). (3)

s(Bt, B
i
t−1) is a term representing the temporal smoothness between the previous

target bounding box Bit−1 and the candidate box Bt. We use a simple function
in this paper: s(Bt, B

i
t−1) = exp(− 1

2σ2 ‖c(Bt) − c(Bit−1)‖2), where c(Bt) is the
center of bounding box Bt and σ is a value controlling the impact of the temporal
smoothness term. We set σ = Ri, where Ri is half of the diagonal length of the
initialized bounding box Bi1. We also test other values as in Section 4.2.

Once the gain values are set, the standard Hungarian algorithm [24,23] can be
modified to optimally solve the association problem. As (N t

p+Ns×No) is usually
much larger than No (a few hundreds vs. a few), available fast implementation
[40] is too slow to be applied directly. We thus firstly find top No candidates for
each target i locally and separately. As the global optimal assignment for that
target i must be one of them, we then combine those found local candidates into
a small matrix in which the optimal solution is exact the same global optimal
solution to the original association problem. Notice that, the standard Hungar-
ian algorithm solves the minimization problem, thus a simple modification is
required before feeding the small matrix to it.
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3.3 Online Updating with Proposals

To update the classifier, f it−1 → f it , we also generate a few local samples, {B̃kt }it,
k = 1, . . . , Ns, around the estimated object location Bit. They are helpful to
increase the discriminative power of the classifier, as the object proposals alone
represent other good “object-like” regions and training with them increases the
discriminative power among “objects-like” candidates, while the negative sample
space contains a lot more other negative samples, thus more negative samples
help. The updating procedure is applied every 5 frames to balance computational
time and minimize potential drift.

As mentioned in the last paragraph of Section 3.1, we treat the estimated re-
sult Bit as an indication for model updating. This is to say, when Bit ∈ {B̃kt }it−1,
we assume that there is no good object proposal and the current estimation is
a compromise for trajectory smoothness, thus skipping the model updating. If
Bit ∈ {B̂

j
t }, then it suggests a good estimation which has both desirable classi-

fier response and high “objectness”, then we update the object model f it−1(B)
immediately.

3.4 Proposed Tracker: PMOT

Various object models can be integrated into our framework. We choose a pop-
ular structured support vector machine (SSVM) method [41], as it shows good
performance on several benchmarks [11,12]. The tracker is denoted as PMOT to
reflect the concepts of shared proposals and multiple object tracking.

Denote the support vector set trained in the SSVM as Vt−1, the classifica-
tion function can then be expressed as a weighted sum of affinities between the
candidate bounding box and the support vectors [42,41]:

f it−1(Bt) =
∑

B̄m∈Vt−1

wmk(B̄m, Bt), m = 1, . . . , |Vt−1| (4)

where wm is a scalar weight associated with the support vector B̄m. Kernel
function k(B̄m, Bt) calculates the affinity between two feature vectors extracted
from B̄m and Bt respectively. The classifier is updated in an online fashion
using [43,44] with a budget [45]. Intersection kernel is used and other parameters
are set same as [41]. We use histogram features obtained by concatenating 16-
bin intensity histograms from a spatial pyramid of 5 levels and RGB channels
separately. At each level L, the patch is divided into L × L cells, resulting in a
2640-D feature vector.

4 Experiments

4.1 Full Benchmark Evaluations

To evaluate the performance of the proposed multiple object tracking method,
we collect 10 videos from various sources, including TB50[15], OTB [11] and
VOT2015 [13]. We denote this dataset as MOOT (Multiple Object Online Track-
ing) and a few samples can be seen in Figure 5. The number of targets in these
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Fig. 3. Sample sequences from the PETS benchmark dataset [5] with ground
truth object windows (blue).

videos ranges from 2 to 5. This dataset contains extremely challenging scenar-
ios, including repetitive mutual occlusion (videos “liquor” and “skating2”) and
similar appearance among the targets (videos “bolt1”, “bolt2”, “football” and
“basketball”).

We also evaluate the proposed method on the video sequences from Perfor-
mance Evaluation of Tracking and Surveillance (PETS) 2015 [5]. These videos
are from surveillance cameras and all targets are humans. We list the details
of the four sequences in Table 1 with corresponding challenges featured. As
we can see, all sequences contain challenging aspects, while video “A1 ARENA-
15 06 TRK RGB 2” (row 2 in Figure 3) is the most difficult one containing both
deformation and occlusion challenges.

Compared Trackers and Evaluation Metrics. Our method (PMOT) is com-
pared with several state-of-the-art methods. Specifically, we compare our method
with SPOT [28] which addresses a similar task as ours and it deploys a structure
preserving model. We also compare with several single online object trackers
to corroborate the point that by sharing and building discriminative classifiers
based on proposals, our method is more robust to drifting. MEEM [20], KCF
[22] and Struck [41] are three top-ranked trackers in recent large benchmarks
[11,12,46,15] for single online object tracking. For all the trackers, we use their
default settings and separately initialize on each object for each video. We also
modify the PMOT for the single object case, denoted as PMOTsingle. This al-
lows us to precisely analyze the improvement of adopting the proposal sharing
scheme, in term of both the tracking metrics and computational efficiency.
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Table 1. Attributes of the four video sequences from the PETS dataset.

Video #humans #frames Challenge

N1 ARENA-01 02 TRK RGB 2 3 115 Size change
W1 ARENA-11 03 ENV RGB 3 2 107 Body deformation
W1 ARENA-11 03 TRK RGB 1 2 101 Body deformation
A1 ARENA-15 06 TRK RGB 2 3 121 Occlusion and body deformation

Table 2. Area Under Curve (AUC) of success plot and precision score (PS) with
20 pixels threshold on the MOOT dataset for the one-pass evaluation (OPE).
Cell values: AUC/PS

MOOT PMOT PMOTsingle SPOT [28] MEEM [20] KCF [22] Struck [41]

ball1 66.2/99.0 66.0/99.3 30.6/67.4 51.3/74.5 48.5/83.1 52.7/86.0
basketball 61.5/84.0 60.2/81.7 11.6/8.6 46.2/70.9 51.3/59.8 38.5/50.3
bolt1 47.4/93.8 36.6/71.6 0.5/0.5 23.5/50.6 34.3/70.6 33.9/73.8
bolt2 50.8/89.0 38.6/69.9 0.6/0.8 47.3/90.4 50.9/93.6 57.4/97.7
football 62.0/94.6 57.8/88.9 23.4/41.5 60.7/97.0 49.5/69.1 57.5/79.7
human4 60.7/93.5 34.5/48.5 61.5/99.5 57.4/91.2 50.2/75.7 62.7/94.7
jogging 67.4/97.6 63.8/89.7 12.3/13.5 60.6/88.4 15.5/19.9 15.0/19.7
liquor 61.0/79.8 41.6/51.0 32.8/38.2 10.6/16.8 18.8/24.6 7.2/8.9
skating1 56.5/71.2 46.5/55.4 55.5/78.4 62.2/92.3 62.8/89.6 35.9/50.0
skating2 50.8/44.9 48.1/43.7 34.6/25.8 35.9/28.4 33.7/37.1 26.7/18.2

Mean 58.5/86.2 49.5/71.5 23.7/34.1 41.7/67.7 40.5/61.6 37.5/61.4

We use the single online object tracking metrics to measure the tracking
performance, similar to [28]. Evaluation metrics and code are provided by the
benchmark [11,15]. We employ the one-pass evaluation (OPE) and use two met-
rics: precision plot and success plot. The former one calculates the percentage
(precision score, PS) of frames whose center location is within a certain thresh-
old distance with the ground truth. A commonly used threshold is 20 pixels.
The latter one calculates a same percentage but based on bounding box overlap
threshold. We utilize the area under curve (AUC) as an indicative measurement
for it.

Experimental Setting. Our tracker is implemented using C++ and MATLAB,
on an i7-2600 3.40 GHz desktop with a 8 GB RAM. For the EdgeBox proposal
method and SSVM applied, we use the default setting recommended by the
authors, except those specified otherwise. We further discuss some parameters
in Section 4.2

Benchmark Results. The results are summarized in Figure 4 and Table 2. We
can see that the SPOT tracker achieves undesirable results, significantly lagging
behind other compared methods. In term of the PS metric, it is 27.3% worse
than Struck, the second worst tracker. It is not particularly surprising though,
as can be seen in Figure 5, where we draw the visual comparison between the
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Fig. 4. Success plot and precison plot on two datasets: MOOT and PETS. Algo-
rithms are ranked by the area under the curve (AUC) and the precision score (20
pixels threshold, PS). Our method achieves consistently superior performance,
especially on the more challenging MOOT dataset.

proposed PMOT and SPOT. It clearly demonstrates that the SPOT tracker
presumes a strong spatial structure exhibited among the objects, while it does
not always hold. As shown in the video “bolt1” (row 1 in Figure 5), the four
dash-line windows (SPOT) still maintain the relative positions while drifting
away the true objects. In contrast, our method robustly and consistently tracks
the objects even they are not moving coherently.

When comparing to the single object online tracking methods, the improve-
ment is clearly shown. On the challenging MOOT dataset, our PMOT tracker
outperforms the second best tracker by a large margin, with 9% and 14.7% in
term of AUC and PS respectively. We can also see the clear advantage of ap-
plying the proposal based approach. Even the single object tracking variant,
PMOTsingle, outperforms the best non-proposal tracker, MEEM, by 7.8% and
3.8% in AUC and PS respectively. This is partly contributed by the online up-
dating strategy of collecting the proposals as hard negative samples to improve
the discriminative power of the classifier, hence is robust to the distractions from
other objects as well as potential distractors in the background.
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For the PETS dataset, we can see that the improvement of PMOT is not
great, outperforming the second best tracker, by 3.4% and 0.7% in the PS
and AUC metrics, respectively. This is partly due to the fact that there is
no significant interactions presented among the objects on PETS, except the
video “A1 ARENA-15 06 TRK RGB 2”. Therefore, our proposed multiple ob-
ject tracking system is unable to take a strong advantage of the proposal sharing
benefit.

4.2 Further Remarks

Temporal Smoothness. The smoothness term s(Bt, B
i
t−1) (3) discussed in

Section 3.2 controls the temporal consistency of the trajectory. This is especially
important in our formulation as the object proposals are generated indepen-
dently in each frame, which results temporal inconsistencies inevitably. We test
different σ values and include the results in Table 3. We observe that a small
σ leads to a strong smoothness constraint, which harms the performance when
objects are occluded, while a large σ tends to result in unstable trajectories.

Size Adaption Ratio. The size adaption ratio α in (2) allows the target window
to adapt the object size changes naturally once set properly. A smaller α leads
to a larger set of object proposals with a more significant size variance, which
harms both the computational efficiency and trajectory stability. We validate it
with different values and results is in Table 3. It corroborates that a larger value
is preferable, but the performance drops when α = 0.9, as it constrains the sizes
of object proposals too tight that it fails to adapt the object size changes.

Maximal Number of Object Proposals. We test 5 variants with the maximal
object proposal number set at 200, 350, 500, 750 and 1000, respectively. The
results are reported in term of AUC/PS metrics as included in Figure 6. As
discussed in Section 3.1, using insufficient number of proposal leads to a bad
coverage of the false positives as well as the object, while using a large number
of proposals attracts spurious candidates.

Alternative Object Proposal Methods. We evaluate using other two popu-
lar object proposal methods, BING [34] and region proposal network (RPN) [7],
instead of EdgeBox for proposals. Results are in Figure 6. Both performances
are worse than the EdgeBox method. This is expected. As shown [29,30], BING
results in a relatively low recall of the objects, while RPN performs undesirably
for small-size objects.

Table 3. Area Under Curve (AUC) of success plot and precision score (20 pixels
threshold) results of PMOT with different temporal smoothness constraints and
size adaption ratios.

Temporal Smoothness Size Adaption Ratio
σ = 0.5Ri σ = Ri σ = 2Ri α = 0.7 α = 0.8 α = 0.9

AUC 51.0 58.5 56.2 49.5 58.5 57.9
PS 72.3 86.2 84.1 70.5 86.2 84.9
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#20#1 #61 #80

#1 #25 #44 #120

#1 #36 #62 #117

#1 #34 #65 #97

#1 #238 #442 #653

#1 #105 #219 #385

#115#1 #47 #78

Fig. 5. Qualitative comparisons with the proposed PMOT tracker (solid lines)
against the SPOT tracker (dash lines) on videos “bolt1”, “ball1”, “liquor”,
“bolt2”, “football”, “skating2” and “jogging” from MOOT dataset (from top
to bottom). Our method exhibits robustness in challenging scenarios such as
repetitive mutual occlusions and similar target appearances.

Failure Mode. Our method may not find every single object in every frame
since we use object proposals as object candidates. Thus it may miss the ob-
ject under, for example, extreme conditions (severe blur, distortion). Such miss
detections, however, do not occur all the time. A temporary failure does not
harm the overall performance since the model is incrementally and selectively
updated.
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Table 4. Processing times (frames per second, fps) of PMOT on videos con-
taining different number of objects.

PMOT PMOTsingle

# of targets No 2 3 4 5 1
fps 4.1 3.3 2.6 1.9 5.3

Fig. 6. Area Under Curve (AUC) of success plot and precision score (20 pixels
threshold) results of PMOT with different maximal numbers of proposals and
various proposal methods.
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Computational Efficiency. Since the object proposals are shared among the
classifiers of multiple targets, we reduce the computational load by not repeating
the proposal generation and feature extraction for each target. Table 4 shows
the processing times (frames per second, fps) for different number of targets.
We categorize the test videos according to the number of targets in them. For
PMOTsingle, the number of targets is always 1. As we can see, our system is
computationally efficient.

5 Conclusion

We proposed a computationally efficient and accurate model-free multiple object
tracking method. It takes the advantage of the object proposals and generates
a small and shared set of object hypotheses in the frame. Then it initializes
multiple classifiers for each target using the shared set. In consecutive frames, the
application and update of the classifiers are also achieved by using the detected
proposals. We evaluated our method on both PETS and a newly introduced
dataset. The results show superior performance against the state-of-the-art.
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